St Andrew's Church of England Primary School Progression in Calculation

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems.
They should also apply their mathematical knowledge to science and other subjects.

National Curriculum 2014

Aims

The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Introduction

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately.

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly.

Strategies for calculation need to be represented by models and images to support, develop and secure understanding.

When teaching a new strategy it is important to start with numbers that the pupil can easily manipulate so that they can understand the methodology.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

The quality and variety of mathematical vocabulary pupils hear and speak are key factors in developing their mathematical justification, argument and proof. They must be assisted in making their thinking clear to themselves as well as others. Teachers should ensure that pupils build secure foundations by using discussion to probe and remedy their misconceptions.

Structuring Learning

Abstract

$15+7=22$

$$
24-8=16
$$

Facilitating Learning

Concrete

Pupils should have access to a range of suitable manipulatives so that they can explore concepts in ways that make sense to them. e.g. 18+5

Pictorial
Pupils should explore how they can record their concrete representations in a way that they understand.

Abstract

Pupils use their own written or mental strategies that do not rely upon a visual representation.

It is important for children to see calculations written in different ways. They must understand that ' $=$ ' is 'equal to' and can appear in different places in a number sentence.

$$
\begin{gathered}
18+5=23 \\
\hline 7+9=[] \\
7=[\quad]-9
\end{gathered}
$$

$$
18+5=10+13
$$

$$
7+2=[]-7
$$

Structures of Addition

Aggregation

Combine two or more sets Total
"How many/much altogether?"

Augmentation

Increasing
Go up by
"Start at \qquad and count on"

Commutative

Understanding addition can be done in any order "Start with the bigger number when counting on"

Addition

Stage 1

Pupils must experience combining two, then more, groups of objects using counting on.

Concrete

- Using concrete apparatus to first count all and then by counting on from the largest number.

Pictorial

- Record building visual images e.g.

Abstract

- Progressing to recording number sentences alongside e.g.

$3+6$

Stage 2

Pupils should be able to partition numbers in different ways e.g.
5 as $2+2+1$ or $4+1$
27 as $20+7$ or $10+17$

Concrete

Using equipment to actively demonstrate partitioning e.g.

Pictorial

Without exchanging

With exchanging

Abstract

$44+15=59$
$40+10=50$
$4+5=9$
$40+9=59$
50
Without
exchanging

Stage 3

Concrete
$144+115=$

Pictorial
$256+125=$

Abstract

Expanded column method

H		T		0
100	+	40	+	4
100	+	10	+	5
200	+	50	+	9
$=259$				
Without exchanging				

T	0
$40+6$	
$10+5$	
$50+11$	
$60+1=61$	
With exchanging	

Stage 4

Concrete
$2.51+1.38=$

0	1/10	1/100
		(373)
(Without exchang	(3)

Pictorial
$1.58+1.61=$

Abstract

Compact column method

Structures of Subtraction

Partitioning
Take away

Inverse Addition
How many more are needed?

Comparison

What is the difference?

Reduction
Count back

Subtraction

Stage 1

Pupils must experience finding out how many are left.

Concrete

Pupils should begin to use apparatus to actively take a number of objects away.

Pictorial

Pupils should being to record building visual images e.g.

Read as go along

Stage 2

Pupils should begin to exchange numbers.
Exchange 'ten' for
Concrete

$27-3=$
Without exchanging

Pictorial

$27-3=$
Without exchanging

With exchanging

Stage 3

Pupils record calculations as expanded column subtraction using partitioning.
Concrete
135-13 =

Pictorial

223-115 =

Abstract

Without exchanging

With exchanging

Stage 4

Concrete
2.36-0.15 =

0	1/10	1/100
	(3) ${ }^{\text {1/3/8) }}$	(37) (3) ${ }^{\text {(3) }}$ (373)
	ithout exchan	(73)

Pictorial

$1.13-0.71=$

Abstract

Structures of Multiplication

Repeated Addition

How many lots (sets)

Scaling

Scale factor
Doubling, trebling How many times

Commutative Law

 Scale factor Doubling, trebling How many times
2×4 is the same as/equal to 4×2

Stage 1

Pupils should recognise how grouping similar objects can support calculations.

Concrete

Pupils being using manipulatives to represent groups or 'lots of' objects.
$-00000-00000-00000-00000-00000-00000-$

Pictorial

$5 \times 10=$

$5 \times 10=$

Abstract

$2+2+2+2=8$
$2 \times 4=8$

Stage 2

Pupils should recognise how to represent repeated addition problems using arrays.

Concrete

Pictorial

Abstract
3 groups of 4
3×4

Stage 3

Pupils should establish their own understanding of how arrays can develop into the grid method for multiplication.

Concrete

$3 \times 13=$

Pictorial

Abstract

Stage 4

Pupils should establish their own understanding of how the grid method can be converted into formal short and long multiplication written methods.

Short multiplication

Long multiplication

Structures of Division

Equal Sharing How many each Share equally between

Inverse
 Multiplication

How many lots of Share equally into groups

6 shared equally by 2

$18 \div 3$
18 divided into equal groups of 3s

6 groups of 3
Philip bought four times as much bread as Fred. If Philip bought 12 loaves how many does Fred have?

Anna's trip to the seaside is three times as long as Ella's. If Anna took 3 hours how long does it take Ella?

Stage 1

Grouping and Sharing

Concrete

Sharing
6 shared equally by
Each group as 3

Grouping
12 split into equal groups of 3

There are 4 groups

Pictorial

Abstract
6 shared between 3
8 divided into 4 equal groups

Stage 2

Pupils should being to use repeated subtraction and addition with links to arrays and number lines.

Concrete

10 divided by 5

Pictorial

Abstract
$6 \div 3$

Pupils should be very secure in their understanding of the concept of division, including remainders, before moving onto the stage 3.

Stage 3

Chunking - using known number facts to support division.
Pictorial

Abstract

Stage 4

Short and long methods for division, including remainders as whole number remainders, fractions, and by rounding, as appropriate for the context.

Concrete
$264 \div 2=$

Pictorial
$363 \div 3=$

Abstract

Short Division
Long Division

